Hierarchical tree snipping: clustering guided by prior knowledge
نویسندگان
چکیده
MOTIVATION Hierarchical clustering is widely used to cluster genes into groups based on their expression similarity. This method first constructs a tree. Next this tree is partitioned into subtrees by cutting all edges at some level, thereby inducing a clustering. Unfortunately, the resulting clusters often do not exhibit significant functional coherence. RESULTS To improve the biological significance of the clustering, we develop a new framework of partitioning by snipping--cutting selected edges at variable levels. The snipped edges are selected to induce clusters that are maximally consistent with partially available background knowledge such as functional classifications. Algorithms for two key applications are presented: functional prediction of genes, and discovery of functionally enriched clusters of co-expressed genes. Simulation results and cross-validation tests indicate that the algorithms perform well even when the actual number of clusters differs considerably from the requested number. Performance is improved compared with a previously proposed algorithm. AVAILABILITY A java package is available at http://www.cs.bgu.ac.il/~dotna/ TreeSnipping
منابع مشابه
HCsnip: An R Package for Semi-supervised Snipping of the Hierarchical Clustering Tree
Hierarchical clustering (HC) is one of the most frequently used methods in computational biology in the analysis of high-dimensional genomics data. Given a data set, HC outputs a binary tree leaves of which are the data points and internal nodes represent clusters of various sizes. Normally, a fixed-height cut on the HC tree is chosen, and each contiguous branch of data points below that height...
متن کاملVignette for HCsnip: An R Package for semi-supervised adaptive-height snipping of the Hierarchical Clustering tree
This vignette shows the use of HCsnip package for extracting clusters from the Hierarchical Clustering (HC) tree in semi-supervised way. Rather than cutting the HC tree at a fixed highest (as existing methods do), it snips the tree at variable heights to extract hidden clusters. Cluster extraction process uses both the data matrix from which HC tree is derived and the available follow-up inform...
متن کاملGene Expression Data Clustering and Visualization Based on a Binary Hierarchical Clustering Framework
We describe the use of a binary hierarchical clustering (BHC) framework for clustering of gene expression data. The BHC algorithm involves two major steps. Firstly, the K-means algorithm is used to split the data into two classes. Secondly, the Fisher criterion is applied to the classes to assess whether the splitting is acceptable. The algorithm is applied to the sub-classes recursively and en...
متن کاملGene Expression Data Clustering and Visualization Based on a Binary Heirarchical Clustering Framework
We describe the use of a binary hierarchical clustering (BHC) framework for clustering of gene expression data. The BHC algorithm involves two major steps. Firstly, the K-means algorithm is used to split the data into two classes. Secondly, the Fisher criterion is applied to the classes to assess whether the splitting is acceptable. The algorithm is applied to the sub-classes recursively and en...
متن کاملThe Time-Marginalized Coalescent Prior for Hierarchical Clustering
We introduce a new prior for use in Nonparametric Bayesian Hierarchical Clustering. The prior is constructed by marginalizing out the time information of Kingman’s coalescent, providing a prior over tree structures which we call the Time-Marginalized Coalescent (TMC). This allows for models which factorize the tree structure and times, providing two benefits: more flexible priors may be constru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 23 24 شماره
صفحات -
تاریخ انتشار 2007